A Crosslinking Analysis of GAP-43 Interactions with Other Proteins in Differentiated N1E-115 Cells

نویسندگان

  • Callise M. Ollom
  • John B. Denny
چکیده

It has been suggested that GAP-43 (growth-associated protein) binds to various proteins in growing neurons as part of its mechanism of action. To test this hypothesis in vivo, differentiated N1E-115 neuroblastoma cells were labeled with [(35)S]-amino acids and were treated with a cleavable crosslinking reagent. The cells were lysed in detergent and the lysates were centrifuged at 100,000 x g to isolate crosslinked complexes. Following cleavage of the crosslinks and analysis by two-dimensional gel electrophoresis, it was found that the crosslinker increased the level of various proteins, and particularly actin, in this pellet fraction. However, GAP-43 was not present, suggesting that GAP-43 was not extensively crosslinked to proteins of the cytoskeleton and membrane skeleton and did not sediment with them. GAP-43 also did not sediment with the membrane skeleton following nonionic detergent lysis. Calmodulin, but not actin or other proposed interaction partners, co-immunoprecipitated with GAP-43 from the 100,000 x g supernatant following crosslinker addition to cells or cell lysates. Faint spots at 34 kDa and 60 kDa were also present. Additional GAP-43 was recovered from GAP-43 immunoprecipitation supernatants with anti-calmodulin but not with anti-actin. The results suggest that GAP-43 is not present in complexes with actin or other membrane skeletal or cytoskeletal proteins in these cells, but it is nevertheless possible that a small fraction of the total GAP-43 may interact with other proteins.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Intracellular Ca2+ concentration in the N1E-115 neuronal cell line and its use for peripheric nerve regeneration.

Entubulation repair of peripheral nerve injuries has a lengthy history. Several experimental and clinical studies have explored the effectiveness of many biodegradable and non-degradable tubes with or without addition of molecules and cells. The main objective of the present study was to develop an economical and also an easy way for culturing a neural cell line which is capable of growing, dif...

متن کامل

Regulation of neurite outgrowth in N1E-115 cells through PDZ-mediated recruitment of diacylglycerol kinase zeta.

Syntrophins are scaffold proteins that regulate the subcellular localization of diacylglycerol kinase zeta (DGK-zeta), an enzyme that phosphorylates the lipid second-messenger diacylglycerol to yield phosphatidic acid. DGK-zeta and syntrophins are abundantly expressed in neurons of the developing and adult brain, but their function is unclear. Here, we show that they are present in cell bodies,...

متن کامل

Activation of dynamin I gene expression by Sp1 and Sp3 is required for neuronal differentiation of N1E-115 cells.

Dynamin I is a key molecule required for the recycling of synaptic vesicles in neurons, and it has been known that dynamin I gene expression is induced during neuronal differentiation. Our previous studies established that neuronal restriction of dynamin I gene expression is controlled by Sp1 and nuclear factor-kappaB-like element-1. Here, using a series of deletion constructs and site-directed...

متن کامل

GAP-43 amino terminal peptides modulate growth cone morphology and neurite outgrowth.

The neuronal growth-associated protein GAP-43 is expressed maximally during development and regeneration, and is enriched at the cytosolic surface of the growth cone membrane. GAP-43 can activate the GTP-binding protein G(o) which is also a major component of the growth cone membrane. These findings have led to the hypothesis that GAP-43 might modulate neurite outgrowth by altering G-protein ac...

متن کامل

Cdc42hs Facilitates Cytoskeletal Reorganization and Neurite Outgrowth by Localizing the 58-Kd Insulin Receptor Substrate to Filamentous Actin

Cdc42Hs is involved in cytoskeletal reorganization and is required for neurite outgrowth in N1E-115 cells. To investigate the molecular mechanism by which Cdc42Hs regulates these processes, a search for novel Cdc42Hs protein partners was undertaken by yeast two-hybrid assay. Here, we identify the 58-kD substrate of the insulin receptor tyrosine kinase (IRS-58) as a Cdc42Hs target. IRS-58 is a b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • International Journal of Molecular Sciences

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2008